Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1868(6): 130613, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593934

RESUMO

BACKGROUND: Serum albumin is the most abundant protein in the Mammalia blood plasma at where plays a decisive role in the transport wide variety of hydrophobic ligands. BSA undergoes oxidative modifications like the carbonylation by the reactive carbonyl species (RCSs) 4-hydroxy-2-nonenal (HNE), 4 hydroxy-2-hexenal (HHE), malondialdehyde (MDA) and 4-oxo-2-nonenal (ONE), among others. The structural and functional changes induced by protein carbonylation have been associated with the advancement of neurodegenerative, cardiovascular, metabolic and cancer diseases. METHODS: To elucidate structural effects of protein carbonylation with RCSs on BSA, parameters for six new non-standard amino acids were designated and molecular dynamics simulations of its mono­carbonylated-BSA systems were conducted in the AMBER force field. Trajectories were evaluated by RMSD, RMSF, PCA, RoG and SASA analysis. RESULTS: An increase in the conformational instability for all proteins modified with local changes were observed, without significant changes on the BSA global three-dimensional folding. A more relaxed compaction level and major solvent accessible surface area for modified systems was found. Four regions of high molecular fluctuation were identified in all modified systems, being the subdomains IA and IIIB those with the most remarkable local conformational changes. Regarding essential modes of domain movements, it was evidenced that the most representatives were those related to IA subdomain, while IIIB subdomain presented discrete changes. CONCLUSIONS: RCSs induces local structural changes on mono­carbonylated BSA. Also, this study extends our knowledge on how carbonylation by RCSs induce structural effects on proteins.

2.
J Chem Theory Comput ; 19(23): 8955-8966, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38014857

RESUMO

In addition to the well-characterized B-form of DNA, duplex DNA can adopt various conformations, such as A or Z-DNA. Though less common, these structures can be induced biologically through protein or ligand interactions or experimentally with niche environmental conditions, such as high salt concentrations or in mixed water-ethanol. Reproducing these alternate structures through molecular dynamics simulations in recent years has been quite challenging with the currently available force fields, simulation techniques, and time scales. In this study, the Drude polarizable force field is tested for its ability to facilitate transitions between A-DNA and B-DNA or maintain A-DNA. Though transitions away from B-DNA were observed in high concentrations of ethanol, the resulting structures had hybrid properties taken from both B-DNA and A-DNA structures. This was also true for A-DNA in ethanol, which lost some of the A-DNA properties that it was expected to maintain. When B-DNA was tested in high salt environments, the resulting B-DNA structures showed no distinguishable differences with the increasing salt concentrations tested. These results with the Drude FF and recent results with additive force fields suggest that at present the current additive and polarizable force fields do not facilitate a complete transition between B- to A-DNA conformations under the conditions simulated. At present, the Drude FF favors A-B DNA hybrid structures when simulated in nonphysiological conditions.


Assuntos
DNA Forma A , DNA de Forma B , DNA/química , Simulação de Dinâmica Molecular , Etanol
3.
Molecules ; 28(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630260

RESUMO

Amoebiasis is the second leading cause of death worldwide associated with parasitic disease and is becoming a critical health problem in low-income countries, urging new treatment alternatives. One of the most promising strategies is enhancing the redox imbalance within these susceptible parasites related to their limited antioxidant defense system. Metal-based drugs represent a perfect option due to their extraordinary capacity to stabilize different oxidation states and adopt diverse geometries, allowing their interaction with several molecular targets. This work describes the amoebicidal activity of five 2-(Z-2,3-diferrocenylvinyl)-4X-4,5-dihydrooxazole derivatives (X = H (3a), Me (3b), iPr (3c), Ph (3d), and benzyl (3e)) on Entamoeba histolytica trophozoites and the physicochemical, experimental, and theoretical properties that can be used to describe the antiproliferative activity. The growth inhibition capacity of these organometallic compounds is strongly related to a fine balance between the compounds' redox potential and hydrophilic character. The antiproliferative activity of diferrocenyl derivatives studied herein could be described either with the redox potential, the energy of electronic transitions, logP, or the calculated HOMO-LUMO values. Compound 3d presents the highest antiproliferative activity of the series with an IC50 of 23 µM. However, the results of this work provide a pipeline to improve the amoebicidal activity of these compounds through the directed modification of their electronic environment.


Assuntos
Amebicidas , Entamoeba histolytica , Amebicidas/farmacologia , Antioxidantes , Eletrônica
4.
J Chem Theory Comput ; 19(13): 4299-4307, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37340948

RESUMO

Advances in molecular dynamics (MD) software alongside enhanced computational power and hardware have allowed for MD simulations to significantly expand our knowledge of biomolecular structure, dynamics, and interactions. Furthermore, it has allowed for the extension of conformational sampling times from nanoseconds to the microsecond level and beyond. This has not only made convergence of conformational ensembles through comprehensive sampling possible but consequently exposed deficiencies and allowed the community to overcome limitations in the available force fields. The reproducibility and accuracy of the force fields are imperative in order to produce biologically relevant data. The Amber nucleic acid force fields have been used widely since the mid-1980s, and improvement of these force fields has been a community effort with several artifacts revealed, corrected, and reevaluated by various research groups. Here, we focus on the Amber force fields for use with double-stranded DNA and present the assessment of two recently developed force field parameter sets (OL21 and Tumuc1). Extensive MD simulations were performed with six test systems and two different water models. We observe the improvement of OL21 and Tumuc1 compared to previous generations of the Amber DNA force. We did not detect any significant improvement in the performance of Tumuc1 compared to OL21 despite the reparameterization of bonded force field terms in the former; however, we did note discrepancies in Tumuc1 when modeling Z-DNA sequences.


Assuntos
DNA Forma Z , DNA , Reprodutibilidade dos Testes , DNA/química , Simulação de Dinâmica Molecular , Conformação Molecular
5.
J Mol Graph Model ; 124: 108533, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37311331

RESUMO

Protein oxidative modifications with reactive carbonyl species (RCS) is directly linked to metabolic processes in premature aging, cancer, neurodegenerative and infectious diseases. RCS as 4-Hydroxy-2-nonal (HNE), 4-Hydroxy-2-hexenal (HHE), 4-Oxo-2-nonenal (ONE) and Malondialdehyde (MDA) attack nucleophilic amino acids residues forming irreversible adducts with proteins as Thioredoxins (Trx). This is a class of small thiol oxide-reductases playing a key role in redox signaling and oxidative stress responses in mammals. Although proteomic studies have identified to Cys-32 residue as a target of HNE attack that inhibit its enzymatic activity, how this carbonylation affects its structure and dynamic behavior at the atomic level is unknown. Even more, the molecular bases for the atomistic behavior of these modified proteins have not been completely understood. We present molecular dynamics simulations of Trx-modified with four different RCS to analyze its global and local structural effects. For this, parameters supported in the AMBER force fields were built and validated for three non-natural cysteine residues modified with HHE, ONE and MDA. Results obtained showed a slight change in the global conformational stability of Trx modified with HNE and MDA, establishing that all modified proteins presented local regions of high mobility in the modified catalytic site and some regions far from the modification area. In addition, essential domain movement modes evidences that proteins modified with the RCS assayed induce changes in conformational flexibility. Finally, these data showed that the given conformational changes did not caused global changes in proteins but rather localized changes in particular regions.


Assuntos
Cisteína , Proteômica , Animais , Peroxidação de Lipídeos , Cisteína/metabolismo , Domínio Catalítico , Aldeídos/química , Tiorredoxinas/química , Mamíferos/metabolismo
6.
J Chem Theory Comput ; 19(8): 2198-2212, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36976268

RESUMO

Flexible nucleic acid structures can be challenging to accurately resolve with currently available experimental structural determination techniques. As an alternative, molecular dynamics (MD) simulations can provide a window into understanding the unique dynamics and population distributions of these biomolecules. Previously, molecular dynamics simulations of noncanonical (non-duplex) nucleic acids have proven difficult to accurately model. With a new influx of improved nucleic acid force fields, achieving an in-depth understanding of the dynamics of flexible nucleic acid structures may be achievable. In this project, currently available nucleic acid force fields are evaluated using a flexible yet stable model system: the DNA mini-dumbbell. Prior to MD simulations, nuclear magnetic resonance (NMR) re-refinement was accomplished using improved refinement techniques in explicit solvent to yield DNA mini-dumbbell structures with better agreement between the newly determined PDB snapshots, with the NMR data itself, as well as the unrestrained simulation data. Starting from newly determined structures, a total aggregate of over 800 µs of production data between 2 DNA mini-dumbbell sequences and 8 force fields was collected to compare to these newly refined structures. The force fields tested spanned from traditional Amber force fields: bsc0, bsc1, OL15, and OL21 to Charmm force fields: Charmm36 and the Drude polarizable force field, as well as force fields from independent developers: Tumuc1 and CuFix/NBFix. The results indicated slight variations not only between the different force fields but also between the sequences as well. Given our previous experiences with high populations of potentially anomalous structures in RNA UUCG tetraloops and in various tetranucleotides, we expected the mini-dumbbell system to be challenging to accurately model. Surprisingly, many of the recently developed force fields generated structures in good agreement with experiments. Yet, each of the force fields provided a different distribution of potentially anomalous structures.


Assuntos
DNA , Ácidos Nucleicos , Conformação de Ácido Nucleico , DNA/química , Simulação de Dinâmica Molecular , RNA/química
7.
J Org Chem ; 88(6): 3599-3614, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36857642

RESUMO

We recently described a chemical strategy to pre-organize a trinucleotide subunit in a conformation suitable for Watson-Crick base pairing for modulating the binding kinetics of single-stranded oligonucleotides (ONs) using bis-phosphonate esters bridging hydrocarbon tethers to provide 11- and 15-membered macrocyclic analogues. In this manuscript, we describe the synthesis of all eight P-stereoisomers of macrocyclic 12-, 13-, 14-, and 16-membered hydrocarbon-bridged nucleotide trimers, their incorporation into ONs, and biophysical characterization of the modified ONs. The size of the macrocyclic tether and configuration at phosphorus had profound effects on hybridization kinetics. ONs containing 12- and 13-membered rings exhibited faster on-rates (up to 5-fold) and off-rates (up to 161-fold). In contrast, ONs using the larger ring size macrocycles generally exhibited smaller changes in binding kinetics relative to unmodified DNA. Interestingly, several of the analogues retained significant binding affinity for RNA based on their dissociation constants, despite being modestly destabilizing in the thermal denaturation experiments, highlighting the potential utility of measuring dissociation constants versus duplex thermal stability when evaluating novel nucleic acid analogues. Overall, our results provide additional insights into the ability of backbone-constrained macrocyclic nucleic acid analogues to modulate hybridization kinetics of modified ONs with RNA.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos/química , RNA/química , Fósforo , Cinética , DNA/química , Oligonucleotídeos/química , Conformação de Ácido Nucleico
8.
Dalton Trans ; 52(7): 2087-2097, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36692493

RESUMO

This paper describes the recognition process of tetrahedral [CuII(tnz)2X2] (X = Cl, Br) complexes by a DNA chain, analyzing the specific interaction between the DNA bases and backbone with the metal and the tinidazole (tnz) ligand. We identified the coordination of the copper metal center with one or two phosphates as the first recognition site for the tinidazole copper(II) complexes, while the ligands present partial intercalation into the minor groove. Also, we discuss a novel trigonal copper(I) tnz bromide complex, obtained by reducing the previously reported [Cu(tnz)2Br2]. This complex sheds light on the mechanism of action of tnz metal complexes as one of the most stable DNA-complex adducts depicts a trigonal geometry around the copper ion.


Assuntos
Complexos de Coordenação , Cobre , Tinidazol , Metais , DNA , Ligantes , Cristalografia por Raios X
9.
RSC Adv ; 12(43): 27826-27838, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36320280

RESUMO

The new dicationic pyridine-2,6-dicarboxamide-based compound 1 bearing two N-alkylquinolinium units was synthesized, structurally determined by single-crystal X-ray diffraction, and studied in-depth as a fluorescent receptor for nucleotides and inorganic phosphorylated anions in pure water. The addition of nucleotides to 1 at pH = 7.0 quenches its blue emission with a selective affinity towards adenosine 5'-triphosphate (ATP) and guanosine 5'-tripohosphate (GTP) over other nucleotides such CTP, UTP, ADP, AMP, dicarboxylates and inorganic anions. On the basis of the spectroscopic tools (1H, 31P NMR, UV-vis, fluorescence), MS measurements and DFT calculations, receptor 1 binds ATP with high affinity (log K = 5.04) through the simultaneous formation of strong hydrogen bonds and π-π interactions between the adenosine fragment and quinolinium ring with binding energy calculated in 8.7 kcal mol-1. High affinity for ATP/GTP is attributed to the high acidity of amides and preorganized rigid structure of 1. Receptor 1 is an order of magnitude more selective for ATP than GTP. An efficient photoinduced electron transfer quenching mechanism with simultaneous receptor-ATP complexation in both the excited and ground states is proposed. Additionally, multiple spectroscopic studies and molecular dynamics simulations showed that 1 can intercalate into DNA base pairs.

10.
J Phys Chem Lett ; 13(27): 6283-6287, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35775742

RESUMO

Duplex DNA is modeled as canonical B-DNA displaying the characteristic Watson-Crick base pairs. A less common and short-lived pairing of the nucleobases is the Hoogsteen (HG) conformation. The low population of the HG base pairs (<1%) necessitates extended sampling times in order to analyze through unbiased molecular dynamics (MD) simulations. We have discovered that with extended sampling times using multiple independent copies of an 18-mer sequence, the MD trajectories reproduce the expected and transient HG base pairing. Consistent with experiment, the percentage of the HG events are within the range of ∼0.1-1.0% over the combined aggregate sampling time of more than 3.6 ms. We present the reliability of the current AMBER set of nucleic acid force fields and tools to accurately simulate naturally occurring base-pairing and opening events without any bias or restraints. The mechanism consists of base pair fraying, flipping of the purine, and reformation with HG base pairs.


Assuntos
DNA , Simulação de Dinâmica Molecular , Pareamento de Bases , Estrutura Molecular , Conformação de Ácido Nucleico , Reprodutibilidade dos Testes
11.
Biochemistry ; 61(4): 265-275, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35104101

RESUMO

The G-quadruplex is a noncanonical fold of DNA commonly found at telomeres and within gene promoter regions of the genome. These guanine-rich sequences are highly susceptible to damages such as base oxidation and depurination, leading to abasic sites. In the present work, we address whether a vacancy, such as an abasic site, in a G-quadruplex serves as a specific ligand recognition site. When the G-tetrad is all guanines, the vacant (abasic) site is recognized and bound by free guanine nucleobase. However, we aim to understand whether the preference for a specific ligand recognition changes with the presence of a guanine oxidation product 8-oxo-7,8-dihydroguanine (OG) adjacent to the vacancy in the tetrad. Using molecular dynamics simulation, circular dichroism, and nuclear magnetic resonance, we examined the ability for riboflavin to stabilize abasic site-containing G-quadruplex structures. Through structural and free energy binding analysis, we observe riboflavin's ability to stabilize an abasic site-containing G-quadruplex only in the presence of an adjacent OG-modified base. Further, when compared to simulation with the vacancy filled by free guanine, we observe that the free guanine nucleobase is pushed outside of the tetrad by OG to interact with other parts of the structure, including loop residues. These results support the preference of riboflavin over free guanine to fill an OG-adjacent G-quadruplex abasic vacancy.


Assuntos
DNA/química , Quadruplex G , Guanina/química , Riboflavina/química , Dicroísmo Circular/métodos , Guanina/análogos & derivados , Humanos , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Oxirredução , Regiões Promotoras Genéticas , Telômero/química
12.
J Am Chem Soc ; 144(4): 1941-1950, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35041415

RESUMO

The binding affinity of therapeutic oligonucleotides (ONs) for their cognate RNA is determined by the rates of association (ka) and dissociation (kd). Single-stranded ONs are highly flexible and can adopt multiple conformations in solution, some of which may not be conducive for hybridization. We investigated if restricting rotation around the sugar-phosphate backbone, by tethering two adjacent backbone phosphonate esters using hydrocarbon bridges, can modulate hybridization kinetics of the modified ONs for complementary RNA. Given the large number of possible analogues with different tether lengths and configurations at the phosphorus atoms, we employed molecular dynamic simulations to optimize the size of the hydrocarbon bridge to guide the synthetic efforts. The backbone-constrained nucleotide trimers with stereodefined configurations at the contiguous backbone phosphorus atoms were assembled using a ring-closing metathesis reaction, then incorporated into oligonucleotides by an in situ synthesis of the phosphoramidites followed by coupling to solid supports. Evaluation of the modified oligonucleotides revealed that 15-membered macrocyclic-constrained analogues displayed similar or slightly improved on-rates but significantly increased off-rates compared to unmodified DNA ONs, resulting in reduced duplex stability. In contrast, LNA ONs with conformationally preorganized furanose rings showed similar on-rates to DNA ONs but very slow off-rates, resulting in net improvement in duplex stability. Furthermore, the experimental data generally supported the molecular dynamics simulation results, suggesting that this strategy can be used as a predictive tool for designing the next generation of constrained backbone ON analogues with improved hybridization properties.


Assuntos
Hidrocarbonetos/química , RNA/química , Cinética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Oligonucleotídeos/síntese química , Oligonucleotídeos/química , Organofosfonatos/química , RNA/metabolismo
13.
Nucleic Acids Res ; 49(7): 3735-3747, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33764383

RESUMO

Visualization of double stranded DNA in gels with the binding of the fluorescent dye ethidium bromide has been a basic experimental technique in any molecular biology laboratory for >40 years. The interaction between ethidium and double stranded DNA has been observed to be an intercalation between base pairs with strong experimental evidence. This presents a unique opportunity for computational chemistry and biomolecular simulation techniques to benchmark and assess their models in order to see if the theory can reproduce experiments and ultimately provide new insights. We present molecular dynamics simulations of the interaction of ethidium with two different double stranded DNA models. The first model system is the classic sequence d(CGCGAATTCGCG)2 also known as the Drew-Dickerson dodecamer. We found that the ethidium ligand binds mainly stacked on, or intercalated between, the terminal base pairs of the DNA with little to no interaction with the inner base pairs. As the intercalation at the terminal CpG steps is relatively rapid, the resultant DNA unwinding, rigidification, and increased stability of the internal base pair steps inhibits further intercalation. In order to reduce these interactions and to provide a larger groove space, a second 18-mer DNA duplex system with the sequence d(GCATGAACGAACGAACGC) was tested. We computed molecular dynamics simulations for 20 independent replicas with this sequence, each with ∼27 µs of sampling time. Results show several spontaneous intercalation and base-pair eversion events that are consistent with experimental observations. The present work suggests that extended MD simulations with modern DNA force fields and optimized simulation codes are allowing the ability to reproduce unbiased intercalation events that we were not able to previously reach due to limits in computing power and the lack of extensively tested force fields and analysis tools.


Assuntos
DNA/química , Etídio/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Ligantes , Coloração e Rotulagem
14.
Mol Ther Nucleic Acids ; 23: 527-535, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33510941

RESUMO

For antisense applications, oligonucleotides must be chemically modified to be resistant to endogenous nucleases. Until now, antisense oligonucleotide (ASO) analogs have been synthesized and then tested for their ability to duplex with a target nucleic acid, usually RNA. In this work, using molecular dynamics calculations simulations, we systematically tested a series of chemically modified analogs in which the 2-deoxyribose was substituted for by one or two methylene groups on each side of the phosphate backbone, producing four compounds, of which three were previously unknown. We used a 9-mer sequence of which the solution structure has been determined by NMR spectroscopy and tested the ability to form stable duplexes of these acyclic analogs to both DNA and RNA. In only one case out of eight, we unexpectedly found the formation of a stable duplex with complementary RNA. We also applied limitations on end fraying because of the terminal AT base pairs, in order to eliminate this as a factor in the comparative results. We consider this a predictive method to potentially identify target ASO analogs for synthesis and testing for antisense drug development.

15.
Biophys Rev ; 13(6): 995-1005, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35059023

RESUMO

The structure of B-DNA, the physiological form of the DNA molecule, has been a central topic in biology, chemistry and physics. Far from uniform and rigid, the double helix was revealed as a flexible and structurally polymorphic molecule. Conformational changes that lead to local and global changes in the helix geometry are mediated by a complex choreography of base and backbone rearrangements affecting the ability of the B-DNA to recognize ligands and consequently on its functionality. In this sense, the knowledge obtained from the sequence-dependent structural properties of B-DNA has always been thought crucial to rationalize how ligands and, most notably, proteins recognize B-DNA and modulate its activity, i.e. the structural basis of gene regulation. Honouring the anniversary of the first high-resolution X-ray structure of a B-DNA molecule, in this contribution, we present the most important discoveries of the last 40 years on the sequence-dependent structural and dynamical properties of B-DNA, from the early beginnings to the current frontiers in the field.

16.
Med Chem ; 17(6): 587-600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31995016

RESUMO

BACKGROUND: Cervical cancer is a major public health issue worldwide, occurring in the vast majority of cases (85%) in low-income countries. Human papillomavirus (HPV) mainly infects the mucosal epithelium, and a small portion causes over 600,000 cases every year worldwide at various anatomical spots, mainly leading to anogenital and head and neck. INTRODUCTION: The E6 oncoprotein encoded by cancer-associated alpha HPV can transform epithelial cells into tumorigenic tissue. Therapy for this infection and blocking of the HPV E6 oncoprotein could be provided with cost-effective and abundant natural products which are an exponentially growing topic in the literature. Finding an active natural compound that readily blocks HPV E6 oncoprotein which could be available for developing countries without expensive extraction processes or costly synthetic pathways is of major interest. METHODS: Molecular dynamics simulation was performed using the most up-to-date AMBER protein force field ff14SB and a GPU enabled high performance computing cluster. RESULTS: In this research, we present a study of the binding properties between 10 selected natural compounds that are readily available with two variants of the E6 oncoprotein types (HPV-16 and HPV-18) using 10+ microsecond molecular dynamics simulations. CONCLUSION: Our results suggest that crocetin, ergosterol peroxide and κ-carrageenan natural products bind strongly to both HPV-16 and HPV-18 and could potentially serve as a scaffolding for further drug development.


Assuntos
Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Proteínas de Ligação a DNA/metabolismo , Simulação de Dinâmica Molecular , Proteínas Oncogênicas Virais/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Ligação a DNA/química , Proteínas Oncogênicas Virais/química , Ligação Proteica , Conformação Proteica , Proteínas Repressoras/química , Risco
17.
J Phys Chem B ; 124(51): 11648-11658, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33320672

RESUMO

Copper-containing compounds known as Casiopeínas are biologically active molecules which show promising antineoplastic effects against several cancer types. Two possible hypotheses regarding the mode of action of the Casiopeínas have emerged from the experimental evidence: the generation of reactive oxygen species or the ability of the compounds to bind and interact with nucleic acids. Using robust molecular dynamics simulations, we investigate the interaction of four different Casiopeínas with the DNA duplex d(GCACGAACGAACGAACGC). The studied copper complexes contain either 4-7- or 5-6-substituted dimethyl phenanthroline as the primary ligand and either glycinate or acetylacetonate as the secondary ligand. For statistical significance and to reduce bias in the simulations, four molecules of each copper compound were manually placed at a distance of 10 Å away from the DNA and 20 independent molecular dynamics simulations were performed, each reaching at least 30 µs. This time scale allows us to reproduce expected DNA terminal base-pair fraying and also to observe intercalation/base-pair eversion events generated by the compounds interacting with DNA. The results reveal that the secondary ligand is the guide toward the mode of binding between the copper complex and DNA in which glycinate prefers minor-groove binding and acetylacetonate produces base-pair eversion and intercalation. The CuII complexes containing glycinate interact within the DNA minor groove which are stabilized principally by the hydrogen bonds formed between the amino group of the aminoacidate moiety, whereas the compounds with the acetylacetonate do not present a stable network of hydrogen bonds and the ligand interactions enhance DNA breathing dynamics that result in base-pair eversion.


Assuntos
Cobre , DNA , Pareamento de Bases , Ligantes , Estrutura Molecular
18.
ACS Med Chem Lett ; 11(8): 1627-1633, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32832033

RESUMO

Peptide-based therapy against cancer is a field of great interest for biomedical developments. Since it was shown that SK3 channels promote cancer cell migration and metastatic development, we started using these channels as targets for the development of antimetastatic drugs. Particularly, tamapin (a peptide found in the venom of the scorpion Mesobuthus tamulus) is the most specific toxin against the SK2 channel currently known. Considering this fact, we designed diverse tamapin mutants based on three different hypotheses to discover a new potent molecule to block SK3 channels. We performed in vitro studies to evaluate this new toxin derivative inhibitor of cancer cell migration. Our results can be used to generate a new tamapin-based therapy against cancer cells that express SK3 channels.

19.
Data Brief ; 29: 105294, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32140512

RESUMO

The data described here supports a part of the research article "Effect of 4­HNE Modification on ZU5-ANK Domain and the Formation of Their Complex with ß­Spectrin: A Molecular Dynamics Simulation Study" [1]. Dataset on Gaff force field parameters of AMBER is provided for the non-standard arginine resulting of reaction with 4-hydroxy-2-nonenal (4-HNE), the major secondary product of lipids peroxidation. Arg-HNE 2-pentilpyrrole adduct is part of the 4-hydroxyalkenals described in various physiopathological disorders related to increased oxidative stress. Data include a framework for derivation of missing bonds, angles and dihedral parameters for modified arginine, alongside optimized partial charges derived with Restrained Electrostatic Potential (RESP) method and the new force field parameters obtained by quantum mechanicals methods (QM) using Hartree-Fock (HF)/6 - 31G** level of theory. Benchmark as a graphics tutorial summary steps to obtained new parameters and the validation of non-standard amino acids is presented. The new residue constructed is put available to the scientific community to perform molecular dynamics simulations of modified 4-HNE proteins on arginine residue and complete the set of data parameters for nucleophilic residues with this reactive aldehyde ADDIN EN.CITE ADDIN EN.CITE.DATA [2]. Data that could be used for the researchers interested in the role of protein oxidation as mediator in cellular pathophysiological.

20.
J Inorg Biochem ; 206: 111043, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109662

RESUMO

In this work, we present the synthesis, characterization, electrochemical studies, DFT calculations, and in vitro amoebicidal effect of seven new heteroleptic NiII coordination compounds. The crystal structures of [H2(pdto)](NO3)2 and [Ni(pdto)(NO3)]PF6 are presented, pdto = 2,2'-[1,2-ethanediylbis-(sulfanediyl-2,1-ethanediyl)]dipyridine. The rest of the compounds have general formulae: [Ni(pdto)(NN)](PF6) where N-N = 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (44dmbpy), 5,5'-dimethyl-2,2'-bipyridine (55dmbpy), 1,10-phenanthroline (phen), 4,7-dimethyl-1,10-phenanthroline (47dmphen) and 5,6-dimethyl-1,10-phenanthroline (56dmphen). The size of NN ligand and its substituents modulate the compound electronic features and influence their antiproliferative efficiency against Entamoeba histolytica. 56dmphen derivative, shows the biggest molar volume and presents a powerful amoebicidal activity (IC50 = 1.2 µM), being seven times more effective than the first-line drug for human amoebiasis metronidazole. Also, increases the reactive oxygen species concentration within the trophozoites. This could be the trigger of the E. histolytica growth inhibition. The antiparasitic effect is described using NiII electron density, molar volume, estimated by DFT, as well as the experimental redox potential and diffusion coefficients. In general, amoebicidal efficiency is directly proportional to the increment of the molar volume and decreases when the redox potential becomes more positive.


Assuntos
Amebicidas/farmacologia , Complexos de Coordenação/farmacologia , Entamoeba histolytica/crescimento & desenvolvimento , Níquel/química , Compostos Organometálicos/farmacologia , Amebicidas/química , Animais , Complexos de Coordenação/química , Cristalografia por Raios X , Entamoeba histolytica/efeitos dos fármacos , Modelos Moleculares , Compostos Organometálicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...